enduro

Ladder Cable Tray

Enduro cable tray has long been the industry standard for high quality fiberglass cable tray. Made from the highest quality pultruded materials, our non-metallic cable tray has been used in the most corrosive and structurally demanding environments across the globe, including off-shore platforms, chemical plants, oil and metal refineries, and water treatment plants.

Our complete line of ladder tray solutions includes straight sections, molded fittings, mitered fittings, fasteners and accessories. In addition, our technical support resources, along with the information found in our Electrical Products Guide and Catalog, will provide everything you need to design a complete non-metallic cable tray system.

System Diagrams

Ladder Cable Tray Selection Guide									
Standard System No. (polyester resin)	Optional System No. (Δ) = insert code; see bottom of pg.	Side Rail Height In. (mm)*	Loading Depth In. (mm)	Flange Width In. (mm)	Min. Channel Thickness In. (mm)	NEMA Class FG-1	Listing	Tray Weight Lbs/Ft. (kg/m) 2 side rails, 12" rung spacing	
ELL3	EL(Δ)3	3" (75)	$1^{13}/_{16}$ " (46)	1" (25)	$^{3/_{16}}$ " (4.8)	8A (1.5 S.F.)	-	$ \begin{array}{r} 1.97 \\ (2.93) \end{array} $	
ETL4	$ET(\Delta)4$	4" (100)	2 ⁷ / ₈ " (73)	$1^{3}/8^{"}$ (35)	¹ /4" (6.4)	8A (1.5 S.F.)	-	2.56 (3.81)	
EHL4	$EH(\Delta)4$	4" (100)	$2^{3/4}$ " (70)	$1^{1}/_{8}$ " (28)	^{1/4} " (6.4)	12A (1.5 S.F.)	Class A	3.06 (4.55)	
ETL6	ΕΤ(Δ)6	6" (150)	$4^{13}/_{16}$ " (122)	$1^{5}/8^{"}$ (41)	⁵ / ₃₂ " (4.0)	18A (1.5 S.F.)	-	2.94 (4.37)	
ELL6	$EL(\Delta)6$	6" (150)	$4^{13}/_{16}$ " (122)	$1^{5}/8^{"}$ (41)	$^{3/_{16}}$ " (4.8)	20A+ (2.0 S.F.)	Class A	2.94 (4.37)	
EHL6	EH(Δ)6	6" (150)	$4^{3/4}$ " (121)	$1^{5}/8^{"}$ (41)	¹ / ₄ " (6.4)	20B+ (2.0 S.F.) 20C (1.5 S.F.)	Class C	4.47 (6.66)	
D-EHL6	D-EH(Δ)6	6" (150)	$\frac{4^{11}/_{16}"}{(119)}$	$1^{5}/_{8}$ " (41)	⁵ / ₁₆ " (8.0)	20C+ (2.0 S.F.)	Class C	4.94 (7.34)	
EHZ6	EHZ(Δ)6	6" (150)	$\frac{4^{11}/_{16}}{(119)}$	2" (51)	⁵ / ₁₆ " (8.0)	20C+ (2.0 S.F.)	-	4.79 (7.13)	
EHL8	EH(Δ)8	8" (200)	$6^{11/_{16}}$ " (170)	$1^{3/4}$ " (44)	⁵ / ₁₆ " (8.0)	20C (1.5 S.F.)	Class C	6.45 (9.60)	
D-EHL10	D-EH(Δ)10	10" (250)	$\frac{8^{5}/8^{2}}{(219)}$	$\frac{2^{3/4}}{(70)}$	³ / ₈ " (9.5)	30C+ (2.0 S.F.)	-	9.39 (13.98)	

 (Δ) = Insert one of the following letters for resin designation: V = Vinyl Ester; S = Halogen-Free Polyester; VS = Halogen-Free Vinyl Ester; Y = Halogen-Free Low Smoke Plus; RT = Conductive; * (mm) value is nominal; Contact us for lead times on all Halogen-Free systems. The Enduro straight sections listed above that are UL Listed are for 10 Ft. and 20 Ft. lengths. All molded and mitered fittings associated with these tray types are also UL listed. NEMA classes and UL listings in this table are for polyester and vinyl ester resin systems only. To convert 2.0 safety factor to NEMA standard 1.5 for "+" load class, multiply published load by 1.33.

enduro

www.endurocomposites.com 16602 Central Green Blvd. Houston, TX 77032 Phone (713) 358-4000 Fax (713) 358-4100 Toll Free (800) 231-7271

enduro

Resin Systems - Ladder Cable Tray

Below is an overview of the common resin systems we offer. When choosing a resin type for your application, we highly recommend consulting with us regarding the application to be sure the proper resin is specified. Considerations include corrosion environment, temperature, fire resistance, smoke and smoke toxicity requirements and conductivity / resistivity requirements. Regarding the corrosion environment, certain chemical concentrations and temperatures will dictate whether a polyester or epoxy vinyl ester system is preferred for optimum durability.

Isophthalic Polyester	This industrial-grade polyester resin system offers very good weathering performance (resistance to UV) and corrosion resistance. This system is especially suitable for seawater environments.
Vinyl Ester	This resin system also delivers good weathering performance, but is superior to a polyester with respect to corrosion resistance and high heat environments. Epoxy vinyl ester resins provide greater toughness and considerably higher strength at elevated temperatures. They also provide superior resistance to chemical attack in corrosive chemical service.
Conductive	This Isophthalic Polyester-based resin is formulated to comply with ABS requirements for conductivity. To pro- vide superior resistance to chemical attack, the conductive formulation is also available in a Vinyl Ester base.
Halogen-Free Polyester	This system offers similar performance attributes as our standard Isophthalic Polyester, but without the use of halogens.
Halogen-Free Vinyl Ester	This system offers similar performance attributes as our Vinyl Ester, but without the use of halogens.
Halogen-Free	This modified-acrylic based resin is suitable for applications which require extremely low-smoke development in

Halogen-Free	This modified-acrylic based resin is suitable for applications which require extremely low-smoke development in
Low Smoke Plus	the case of fire. This resin system is commonly used in tunnel applications.

Working (Allowable) Load Lbs/Ft (kg/m)					Values are applicable to all resin systems, where possible.				
System No.	8' (2.4m)	10' (3m)	12' (3.7m)	14' (4.3m)	16' (4.9m)	18' (5.5m)	20' (6.1m)	30' (9.1m)	
ELL3	50 (74)								
ETL4	50 (74)								
EHL4		224 (333)	$ \begin{array}{r} 176 \\ (262) \end{array} $	134 (199)	103 (153)	76 (113)	50 (74)		
ETL6		243 (361)	168 (251)	124 (184)	94 (141)	50 (74)			
ELL6		200 (298)	139 (207)	$ \begin{array}{r} 100 \\ (149) \end{array} $	78 (116)	61 (90)	50 (74)		
EHL6				200 (298)	156 (232)	123 (183)	100 (148)		
D-EHL6				200 (298)	156 (232)		$ \begin{array}{r} 100 \\ (148) \end{array} $		
EHZ6				200 (298)	156 (232)	123 (183)	100 (148)		
EHL8					156 (232)		100 (148)		
D-EHL10						277 (412)	225 (335)	100 (148)	

enduro

www.endurocomposites.com 16602 Central Green Blvd. Houston, TX 77032