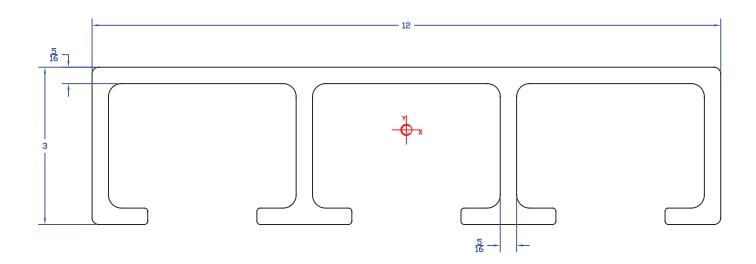


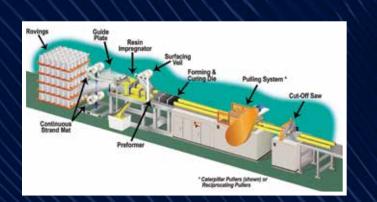
SUPERDECK LITE, SUPERDECK HIGHWAY & SUPERDECK MASS TRANSIT DECKING SYSTEMS

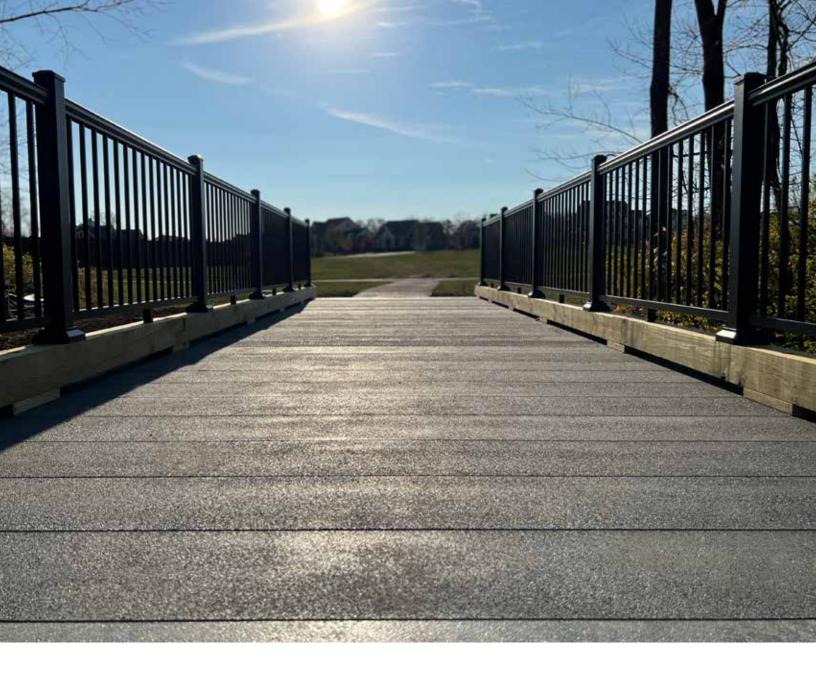
SuperDeck Lite Decking


SuperDeck Lite, a pultruded fiberglass reinforced polymer (FRP) deck profile, designed to support both uniform live loads and AASHTO H-5 wheel loads, has been developed for use on pedestrian, bicycle, and access structures.

The load tables were developed from experimental testing. The testing was used to develop ASTM D7290 characteristic full section flexural strength, characteristic in-plane shear strength, and the average full section flexural modulus of elasticity. The mechanical attributes described are the governing values necessary for both structural and serviceability computations when the loads are applied across the entire twelve-inch width of the deck profile. The corresponding full section in-plane shear strength, flexural strength, and flexural modulus of elasticity were determined based on ASTM D8069-17A full section testing conditions.

SUPERDECK LITE IS AVAILABLE IN STANDARD ISOPHTHALIC POLYESTER AND VINYL ESTER RESIN SYSTEMS:

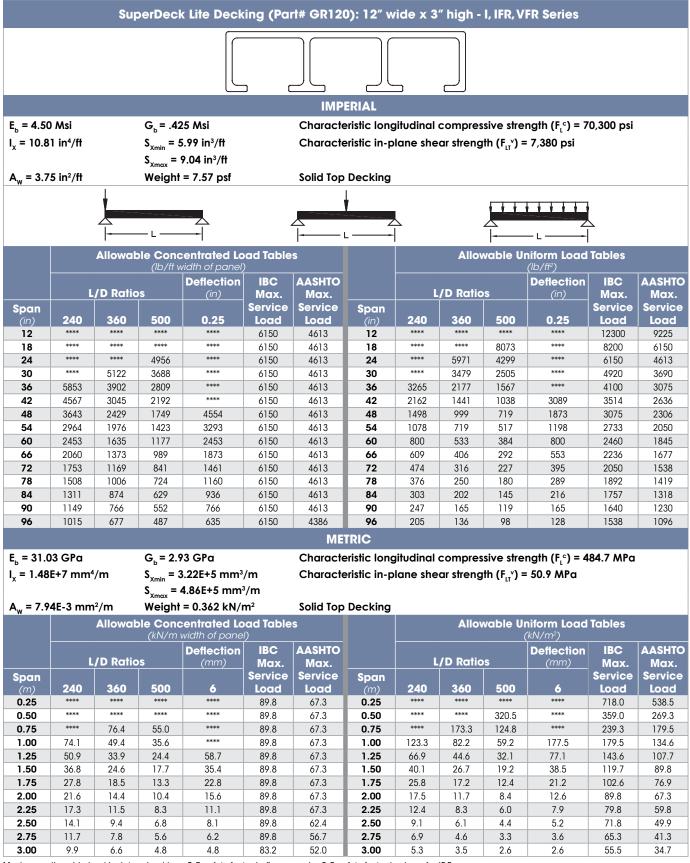

- 1500 Standard Polyester Resin (I), Non Fire Retardant, Olive Green
- 1525 Standard Isophthalic Polyester Resin (IFR), Fire Retardant, Slate Gray


1625 - Standard Vinyl Ester Resin (VFR), Fire Retardant, Beige

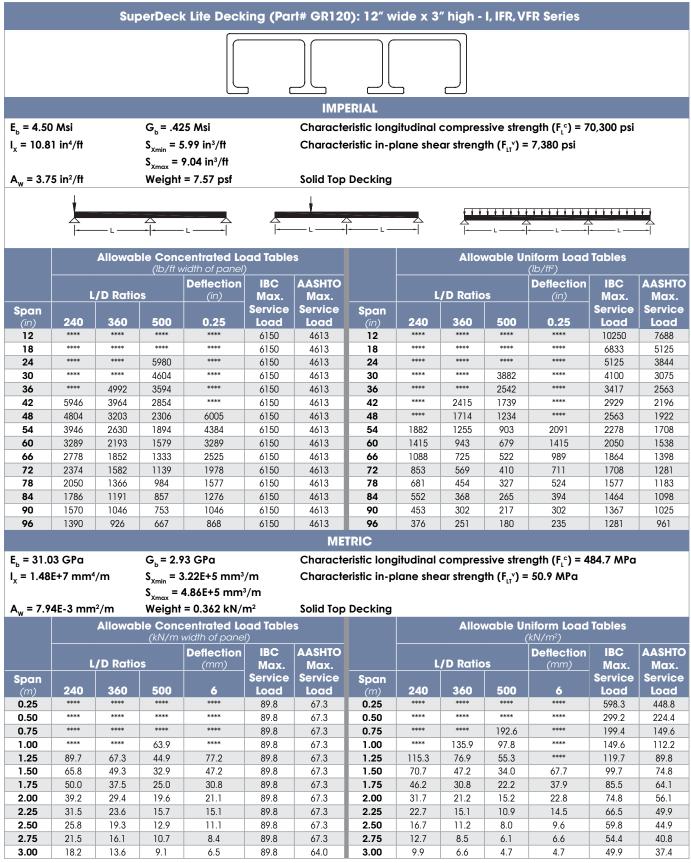
What Is Pultrusion?

Pultrusion is an advanced continuous manufacturing process utilized to make composite profiles with uniform cross-sections. The specified fiberglass reinforcements, in the form of roving and mats are saturated with engineered resins and channeled into a customize die with high heat. The profile exits the die as a mechanically bonded solid with the desired cross-section and performance specifications.

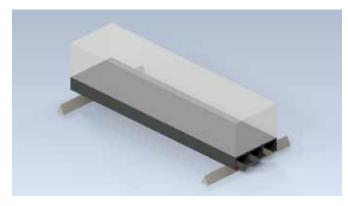
Applications


- H-5 Rated Pedestrian Bridges
- Pedestrian Decks & Walkways
- Catwalks, Mezzanines, Commercial Decks

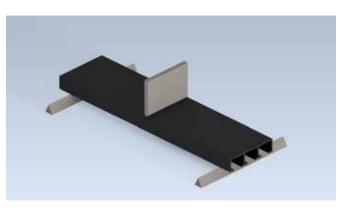
- Sidewalks & Ramps
- Commercial Piers
- Marina Dock Decking


Features and Benefits

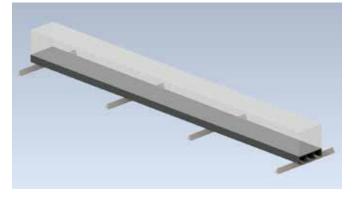
- ADA Compliant Traction & Dielectric Strength Enhances Safety
- Exceptional Service Life Lowest Lifetime Cost of Ownership
- Corrosion & Rot Resistant Long-Life for Corrosive Applications
- Environmentally Sustainable Doesn't Leach Toxins
- Outperforms Wood & Steel 80% Lighter than Steel
- Fast Installation Lightweight, Easy to Carry, Drill and Cut
- Architectural Decking Offered in Three Natural Colors
- Manufactured in the USA ISO 9001:2015 Compliant Facility


SuperDeck Lite Decking (Part# GR120) - Simple Supported Beam - Single Span

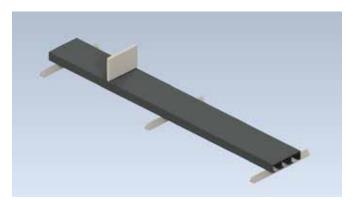
SuperDeck Lite Decking (Part# GR120) - Simple Supported Beam - Continuous Span



Typical Load Scenario Depicted In Load Charts

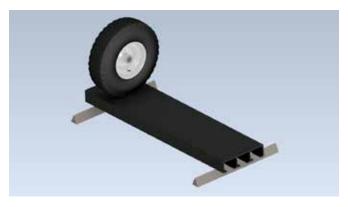

UNIFORM LOAD - SINGLE SPAN; SIMPLY SUPPORTED

Uniform Load in lbf/ft² (kN/m²)



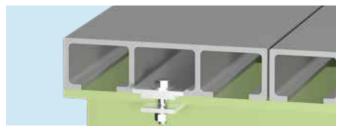
CONCENTRATED LOAD - SINGLE SPAN; SIMPLY SUPPORTED

A concentrated load in lbf/ft width of panel (kN/m)



UNIFORM LOAD - CONTINUOUS SPAN Uniform Load in lbf/ft² (kN/m²)

CONCENTRATED LOAD AT CENTER OF ONE SPAN - CONTINUOUS SPAN


A concentrated load in lbf/ft width of panel (kN/m)

WHEEL LOAD - SINGLE SPAN -WHEEL LOAD APPLIED ADJACENT TO SUPPORT

A concentrated load in lbf based on tire footprint (kN)

Deck To Girder Connections

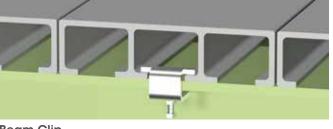
Hold Down Clamp

The hold down clamp features a steel machined plate that interlocks with the deck and clamps to the flanges of the girder. This connection would offer little to no visibility from top of deck.

Typical Hold Down Clamp Connection								
Description	Quantity							
Top Plate	1							
Bottom Plate	2							
½″ Bolt	2							
1⁄2″ Nut	2							
1/2" Washer	4							
1/2" Lock Washer	2							

Hold-down components can be supplied in either stainless or galvanized steel; Consult factory for part numbers and connection details

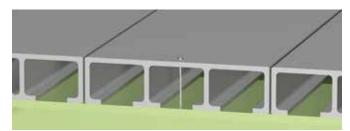
The beam clip offers a quick hold down option that can be adjusted for a variance of thicknesses. This clamp also provides little to no visual effects from the top of the structure. The maximum thickness of the steel or FRP flange can be 11/16 inch.


Beam Clip Connection									
Description	Quantity								
Heavy Duty Beam Clip	1								
5/16" – 18 UNC Hex Head Bolt	1								
5/16" -18 UNC Hex Nut	1								

Hold-down components can be supplied in either stainless or galvanized steel; Consult factory for part numbers and connection details

This hidden clamp features an FRP flat sheet that captures the bottom flanges of the GR120. This allows for a secure hold on the plank and creates a clean connection. The flange of the support structure will need to be drilled. Although this connection is more labor intensive, it is an excellent blind connection technique for bridges with higher-than-average wind uplift loads.

Hidden Clamp Connection								
Description	Quantity							
3" x 3" x ¼" FRP Flat Sheet	1							
3/8" Hex Head Bolt	1							
3/8" Washer	2							
3/8" Lock Washer	1							
3/8" Hex Nut	1							


The *Saberdrive Construction Lag Screw*[®] is ideal for quick installations and top-down construction with partial visual of the hardware. When wind uplift load is minimal, this is a good choice for pedestrian bridges and board walks. The recommended screw length for the GR120 is four inches assuming a material thickness of 1/2 inch.

Beam Clip

Hidden Clamp Connection

Flanged Screw

Specifying

1.0 SCOPE

This specification depicts the minimum mechanical physical properties, and quality standards for the Fiberglass Reinforced Polymer (FRP) GR120 AASHTO Wheel Load Deck.

2.0 APPLICABLE DOCUMENTS

The latest revisions of the following documents in effect on the date of invitation apply to the extent specified herein, except in the case of specifically dated documents, in which case those revisions shall apply:

- ASTM D3917, Standard Specification for Dimensional Tolerance of Thermosetting Glass-Reinforced Plastic Pultruded Shapes
- ASTM D4385, Standard Practice for Classifying Visual Defects in Thermosetting Reinforced Plastic Pultruded Products
- ASTM D7290, Standard Practice for Evaluating Material Property Characteristic Values for Polymeric Composites for Civil Engineering Structural Applications
- ASTM D8069-17A, Standard Test Method for Determining Flexural Modulus of Full Section Pultruded Fiber Reinforced Polymer (FRP) Composite Members with Doubly Symmetric Cross Sections Under Bending
- UL 94 (V0), Standard for Tests for Flammability of Plastic Materials for Parts in Devices and Appliances
- ASTM E84 Class A, Standard Test Method for Surface Burning Characteristics of Building Materials

3.0 GENERAL

Pultruded FRP Planks shall be manufactured by a manufacturer that holds an ISO 9001:2015 certificate.

The FRP Planks shall be manufactured with commercial grade E or ECR fiberglass and thermoset resins and shall meet or exceed the manufactures published properties.

The strength and stiffness ratings shall be established by full section testing to determine the apparent flexural and shear strength and the flexural modulus of elasticity.

4.0 MINIMUM MECHANICAL AND PHYSICAL PROPERTIES

Minimum Full Section Modulus of Elasticity: 4.5 Msi Characteristic Bending Strength per ASTM D7290: 70,300 psi (Full Section) Characteristic In-Plane Shear Strength per ASTM D7290: 7,380 psi (Full Section) Fire ratings when applicable: UL 94 (V0) and ASTM E84 Class A.

5.0 VISUAL REQUIREMENTS

The FRP Planks shall be manufactured and inspected per the visual standard ASTM D4385.

6.0 DIMENSIONAL REQUIREMENTS

The FRP Planks shall be manufactured and dimensionally inspected per the dimensional requirements as set forth in ASTM D3917.

7.0 WEATHERING UV PROTECTION

The FRP Planks shall be encompassed with a 10 mil thick thermoplastic polyester surface veil to protect the fiberglass reinforcements from fiber blooming. Shall contain UV light absorbers.

8.0 WEARING SURFACE

The wear surface shal be a low-VOC, elastomeric polymer antiskid specially formulated for pedestrain traffic. Yielding a sealed and weather-resistant anti-slip surface that meets the requirements of the ADA. Coefficient of Friction Dry 1.3, Wet 0.9 (ADA min requirement = 0.6).

9.0 QUALITY CONTROL

Manufacturer shall inspect the FRP Planks as detailed in their ISO 9001:2015 requirements.

10.0 DECK TO GIRDER CONNECTIONS

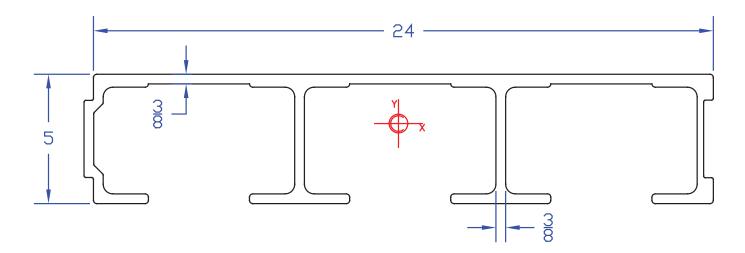
Fastener connection to be designed by engineer with knowledge in working with fiber reinforced polymer (FRP).

H-5 Wheel Load Design & Calculations

The following design requirements and calculations are based on full section testing that Creative Composites Group (CCG) performed. Further information regarding testing or test results can be found in the "AASHTO H-5 Pultruded Fiberglass Reinforced Polymer (FRP) SuperDeck Lite Realization & Validation" white paper. Due to the deck width being 12 in. and the footprint length of 11.2 in., CCG assumed the wheel footprint load distributed evenly across the top 12 in surface of the deck. Both AASHTO H-5 wheel footprint and standard full section shear testing values meet the general load requirements. Therefore, CCG used the standard full section shear stress as a conservative design value.

AASHTO H-5 Truck specifies a rear-wheel load of 4,000 lbf. With a safety factor of four, the minimum shear and flexural stress would need to be 5,778 psi and 32,059 psi, respectively. Assuming the worst-case load scenario, CCG publishes a characteristic shear and flexural stress of 7,380 psi and 70,300 psi, respectively which are above the minimum values.

	Max Span (in) for H-5 Wheel Load Applied at Midspan						
Code	Allowable Strength	Allowable Deflection 0.25in	Allowable Deflection L/360	Allowable Deflection L/500			
IBC ^A	168						
LRFD AASHTO ^B	120	50	35	28			
ASD AASHTO ^c	105						


A - 2018 International Building Code (IBC); IBC Safety Factors include 3 for shear and 2.5 for flexure

B – 2020 LRFD Bridge Design Specifications, 9th Edition; LRFD AASHTO Equivalent Allowable Safety Factors include 3.5 for shear and 3.5 for flexure (Equivalent Allowable Safety Factor = Load Factor Divided by Phi Factor)

C - 2002 AASHTO Standard Specifications for Highway Bridges 17th Edition; ASD AASHTO Safety Factors include 4 for shear and 4 for flexure

SuperDeck Mass Transit Decking

SuperDeck Mass Transit decking was developed specifically for the mass transit industry. As the infrastructure ages and mass transit platforms are repaired and replaced, concrete decks are being upgraded with lightweight, corrosion resistant pultruded decks. SuperDeck Mass Transit was designed for rapid construction with an integrated tactile and ADA compliant wearing surface. The unique connection system allows contractors to install the deck in a fraction of the time of a concrete deck. Contact us for anti-skid and wearing surface options.

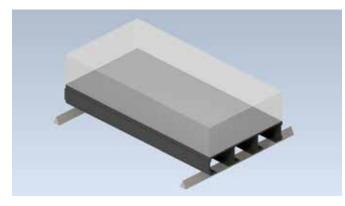
Applications

- Mass Transit Platforms
- Decking for Walkways & Platforms
- Marina Dock Decking
- Pedestrian Bridge Decks
- Commercial Piers

Features and Benefits

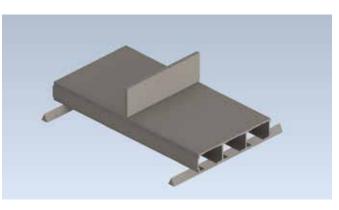
- Corrosion Resistant
- Non-Conductive
- Lightweight
- Maintenance Free
- Environmentally Safe
- High Strength

- Structurally Stable
- Electromagnetic Transparency
- Easy Standard Installation Methods
- · Panels Easily removed
- Elimination of Expensive Labor & Equipment

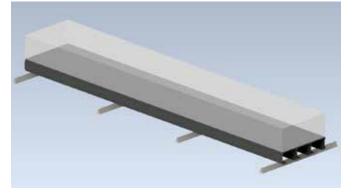

SuperDeck Mass Transit Decking (Part# GR250) - Simple Supported Beam - Single Span

		SuperD	eck Ma	iss Transit	Decking	(Part# G	R250): 2	4″ wide	ə x 5″ hi	igh - I, Il	FR, VFR Ser	ies	
				ار م					الـــ				
				I.					ļ				
					о с			_	ک				
E _b = 3.50	0 Msi		G _b = 0.5	50 Msi				jitudinal	compres	sive stre	ngth (F,) = 30	0,000 psi	
I _x = 41.2	2 in⁴/ft		S _{xmin} = 1	13.3 in³/ft 21.64 in³/ft							= 10,000 psi		
A _w = 3.9	9 in²/ft		Weight	= 9.4 psf									
								4					
									Aller			Tables	
		Allowar		vidth of pane		5			Allov		niform Load (lb/ft²)	lables	
	L	./D Ratic	s	Deflection (in)	IBC Max.	AASHTO Max.		L	./D Ratio	S	Deflection (in)	IBC Max.	AASHTO Max.
Span (in)	240	360	500	0.25	Service Load	Service Load	Span (in)	240	360	500	0.25	Service Load	Service Load
12	****	****	****	****	8667	6500	12	****	****	****	****	17333	13000
18	****	****	****	****	8667	6500	18	****	****	****	****	11556	8667
24	****	****	****	****	8667	6500	24	****	****	8612	****	8667	6500
30	****	****	7745	****	8667	6500	30	****	****	5503	****	6933	5200
36	****	****	6340	****	8667	6500	36	****	5112	3681	****	5778	4333
42	****	7252	5221	****	8667	6500	42	****	3553	2558	****	4952	3714
48	****	6025	4338	****	8667	6500	48	3828	2552	1837	****	4333	3250
54	7583	5055	3640	8425	8667	6500	54	2828	1885	1357	3142	3852	2889
60	6427	4285	3085	6427	8667	6500	60	2141	1428	1028	2141	3467	2600
66	5500	3667	2640	5000	8667	6045	66	1656	1104	795	1506	3152	2198
72	4750	3167	2280	3958	8667	5542	72	1305	870	626	1087	2889	1847
78	4137	2758	1986	3182	8185	5115	78	1045	697	502	804	2518	1574
84	3631	2420	1743	2593	7600	4750	84	849	566	407	606	2171	1357
90 112	3209 2147	2139 1431	1540 1031	2139 1150	7093 5700	4433 3563	90 112	698 373	466 249	335 179	466 200	1892 1221	1182 763
112	2147	1431	1031	1150	5700		TRIC	373	249	1/9	200	1221	703
E _b = 24.	1 GPa		G _b = 3.4	1 GPa				itudinal	compres	sive stre	ngth (F,) = 20)7 MPa	
5	. c. c. E+7 mm⁴/	m	-	7.15E+5 mm ³	/m		eristic in-p				-	<i></i>	
1 _x - 5.0L	.,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					Characte	mane m-p	iune sne	a sireng	, , , , , , , , , , , , , , , , , , ,	07 Mil G		
A - 8 2	26E+3 mn	n ² /m		1.16E+6 mm = 0.45 kN/n									
A _w = 0.2	201+3 1111		-	entrated Lo					Aller	weble II		Tables	
		Allowa		width of pane		5			Allov		niform Load (kN/m²)	lables	
			(kN/m		2								1
			(kN/m	· · · ·	IBC	AASHIO					Deflection		AASHTO
		./D Ratic		Deflection (mm)	IBC Max.	AASHTO Max.		L	./D Ratio	s	Deflection (mm)	IBC Max.	AASHTO Max.
Span)S	Deflection (mm)	Max. Service	Max. Service	Span				(mm)	Max. Service	Max. Service
(m)	240	360	s 500	Deflection (mm) 6	Max. Service Load	Max. Service Load	(m)	240	360	500	(mm) 6	Max. Service Load	Max. Service Load
(m) 0.25	240	360	500	Deflection (mm) 6	Max. Service Load 126.5	Max. Service Load 94.9	(m) 0.25	240 ****	360	500 ****	(mm) 6 ****	Max. Service Load 1011.8	Max. Service Load 758.9
(<i>m</i>) 0.25 0.50	240 **** ****	360 **** ****	500 **** ****	Deflection (mm) 6 ****	Max. Service Load 126.5 126.5	Max. Service Load 94.9 94.9	(m) 0.25 0.50	240 **** ****	360 ****	500 **** ****	(mm) 6 ****	Max. Service Load 1011.8 505.9	Max. Service Load 758.9 379.4
(m) 0.25 0.50 0.75	240 **** **** ****	360 **** **** ****	500 **** 114.8	Deflection (mm) 6 **** ****	Max. Service Load 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9	(m) 0.25 0.50 0.75	240 **** **** ****	360 **** **** ****	500 **** **** 272.5	(mm) 6 **** ****	Max. Service Load 1011.8 505.9 337.3	Max. Service Load 758.9 379.4 253.0
(m) 0.25 0.50 0.75 1.00	240 **** **** ****	360 **** **** **** 115.1	500 **** 114.8 82.9	Deflection (mm) 6 **** **** ****	Max. Service Load 126.5 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9 94.9	(m) 0.25 0.50 0.75 1.00	240 **** **** ****	360 **** **** **** 198.7	500 **** **** 272.5 143.0	(mm) 6 **** **** ****	Max. Service Load 1011.8 505.9 337.3 253.0	Max. Service Load 758.9 379.4 253.0 189.7
(m) 0.25 0.50 0.75 1.00 1.25	240 **** **** **** ****	360 **** **** 115.1 84.8	500 **** 114.8 82.9 61.0	Deflection (mm) 6 **** **** **** ****	Max. Service Load 126.5 126.5 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9	(m) 0.25 0.50 0.75 1.00 1.25	240 **** **** **** 172.0	360 **** **** 198.7 114.7	500 **** 272.5 143.0 82.6	(mm) 6 **** **** **** 198.2	Max. Service Load 1011.8 505.9 337.3 253.0 202.4	Max. Service Load 758.9 379.4 253.0 189.7 151.8
(m) 0.25 0.50 0.75 1.00 1.25 1.50	240 **** **** **** **** **** 96.2	360 **** **** 115.1 84.8 64.1	500 **** 114.8 82.9 61.0 46.2	Deflection (mm) 6 **** **** **** **** **** ****	Max. Service Load 126.5 126.5 126.5 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.	(m) 0.25 0.50 0.75 1.00 1.25 1.50	240 **** **** **** 172.0 107.0	360 **** **** 198.7 114.7 71.3	500 **** 272.5 143.0 82.6 51.3	(mm) 6 **** **** **** 198.2 102.7	Max. Service Load 1011.8 505.9 337.3 253.0 202.4 168.6	Max. Service Load 758.9 379.4 253.0 189.7 151.8 126.5
(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75	240 **** **** **** 96.2 74.7	360 **** **** 115.1 84.8 64.1 49.8	>S 500 **** 114.8 82.9 61.0 46.2 35.9	Deflection (mm) 6 **** **** **** **** 92.4 61.5	Max. Service Load 126.5 126.5 126.5 126.5 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.	(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75	240 **** **** **** 172.0 107.0 70.5	360 **** **** 198.7 114.7 71.3 47.0	500 **** 272.5 143.0 82.6 51.3 33.8	(mm) 6 **** **** **** 198.2 102.7 58.0	Max. Service Load 1011.8 505.9 337.3 253.0 202.4 168.6 144.5	Max. Service Load 758.9 379.4 253.0 189.7 151.8 126.5 96.6
(m) 0.25 0.50 0.75 1.00 1.25 1.50	240 **** **** **** **** **** 96.2	360 **** **** 115.1 84.8 64.1	500 **** 114.8 82.9 61.0 46.2	Deflection (mm) 6 **** **** **** **** 92.4 61.5 42.8	Max. Service Load 126.5 126.5 126.5 126.5 126.5 126.5	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9 94.9 94.	(m) 0.25 0.50 0.75 1.00 1.25 1.50	240 **** **** **** 172.0 107.0	360 **** **** 198.7 114.7 71.3	500 **** 272.5 143.0 82.6 51.3	(mm) 6 **** **** **** 198.2 102.7	Max. Service Load 1011.8 505.9 337.3 253.0 202.4 168.6 144.5 118.3	Max. Service Load 758.9 379.4 253.0 189.7 151.8 126.5
(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	240 **** **** **** 96.2 74.7 59.4	360 **** **** 115.1 84.8 64.1 49.8 39.6	>S 500 **** 114.8 82.9 61.0 46.2 35.9 28.5	Deflection (mm) 6 **** **** **** **** 92.4 61.5	Max. Service Load 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 118.3	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9 94.9 84.5 74.0	(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00	240 **** **** 172.0 107.0 70.5 48.7	360 **** **** 198.7 114.7 71.3 47.0 32.5	500 **** 272.5 143.0 82.6 51.3 33.8 23.4	(mm) 6 **** **** 198.2 102.7 58.0 35.1	Max. Service Load 1011.8 505.9 337.3 253.0 202.4 168.6 144.5	Max. Service Load 758.9 379.4 253.0 189.7 151.8 126.5 96.6 74.0
(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25	240 **** **** **** 96.2 74.7 59.4 48.2	360 **** **** 115.1 84.8 64.1 49.8 39.6 32.1	>S 500 **** 114.8 82.9 61.0 46.2 35.9 28.5 23.1	Deflection (mm) 6 **** **** **** **** 92.4 61.5 42.8 30.8	Max. Service Load 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 126.5 118.3 105.2	Max. Service Load 94.9 94.9 94.9 94.9 94.9 94.9 94.9 84.5 74.0 65.7	(m) 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25	240 **** **** 172.0 107.0 70.5 48.7 35.0	360 **** **** 198.7 114.7 71.3 47.0 32.5 23.3	500 **** 272.5 143.0 82.6 51.3 33.8 23.4 16.8	(mm) 6 **** **** 198.2 102.7 58.0 35.1 22.4	Max. Service Load 1011.8 505.9 337.3 253.0 202.4 168.6 144.5 118.3 93.5	Max. Service Load 758.9 379.4 253.0 189.7 151.8 126.5 96.6 74.0 58.4

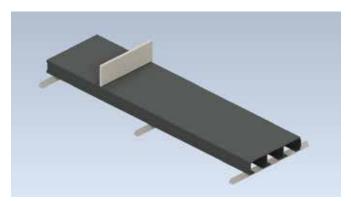
SuperDeck Mass Transit Decking (Part# GR250) - Simple Supported Beam - Continuous Span



Typical Load Scenario Depicted In Load Charts

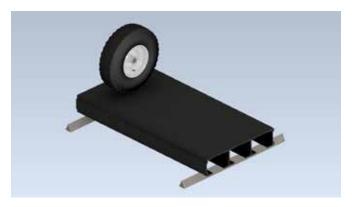

UNIFORM LOAD - SINGLE SPAN; SIMPLY SUPPORTED

Uniform Load in lbf/ft² (kN/m²)



CONCENTRATED LOAD - SINGLE SPAN; SIMPLY SUPPORTED

A concentrated load in lbf/ft width of panel (kN/m)



UNIFORM LOAD - CONTINUOUS SPAN Uniform Load in lbf/ft² (kN/m²)

CONCENTRATED LOAD AT CENTER OF ONE SPAN - CONTINUOUS SPAN

A concentrated load in lbf/ft width of panel (kN/m)

WHEEL LOAD - SINGLE SPAN -WHEEL LOAD APPLIED ADJACENT TO SUPPORT

A concentrated load in lbf based on tire footprint (kN)

Deck To Girder Connections

Hold Down Clamp

The hold down clamp features a steel machined plate that interlocks with the deck and clamps to the flange of the girder on both sides of the beam. This clamp would offer little to no visibility upon assembly.

Hold Down Clamp Connection									
Description	Quantity								
Top Plate	1								
Bottom Plate	2								
5/8" Bolt	2								
5/8″ Nut	2								
5/8" Washer	4								
5/8" Lock Washer	2								

Hold-down components can be supplied in either stainless or galvanized steel; Consult factory for part numbers and connection details

Beam Clip

The beam clip offers a quick hold down option that can be adjusted for a variance of thicknesses. This clamp also provides little to no visual effects from the top of the structure. The maximum thickness of the steel or FRP flange can be $1 \frac{3}{4}$ inch.

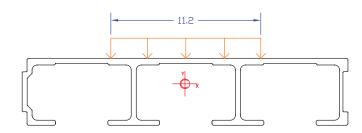
Beam Clip Connection									
Description	Quantity								
Heavy Duty Beam Clip	1								
5/8" Hex Head Bolt	1								
5/8" Hex Nut	1								
¼" Hex Head Bolt	2								
¼" Washer	4								
1/4" Lock Washer	2								
1⁄4" Hex Nut	2								

Hold-down components can be supplied in either stainless or galvanized steel; Consult factory for part numbers and connection details

Hidden Clamp Connection

This hidden clamp features a steel plate that captures the bottom flanges of the GR250. This allows for a secure hold on the plank and creates a clean connection. The flange of the support structure will need to be drilled. Although this connection is more labor intensive, it is an excellent blind connection technique for bridges with higher-than-average wind uplift loads.

Hidden Clamp Connection									
Description	Quantity								
6.5" x 6.5" x ¼" Steel Plate	1								
5/8" Hex Head Bolt	1								
5/8" Washer	2								
5/8" Lock Washer	1								
5/8" Hex Nut	1								


H-5 Wheel Load Analysis & Design Considerations

Flexural properties for design strength and serviceability calculations are extrapolated from testing of GR120, at the component level, which was performed previously at (CCG). Additional information regarding the testing procedure and test results can be scrutinized in the GR120 white paper data base. Wheel load simulation testing on the GR120 demonstrated that the top flange distributed the wheel load to the outside webs increasing the total effective web area. The web load distribution factor was determined by dividing the total number of webs by the number of webs influenced by the wheel load. The web ratio was defined for the purpose of calculating the load distribution factor on the shear area (webs) in GR250 panel.

The load distribution on the top flange varies for each SuperDeck profile. Because the wheel footprint is 11.2 inches, most of CCG's decks are assumed to evenly distribute the load across each of the webs. However, the GR250 deck is 24 inches wide and the test results depicted in the image to the right indicates that the webs directly under the wheel resist the majority of the applied wheel load. It is assumed that GR250 would have the same failure mechanism in the webs under shear loading (wheel load). Hence, the web ratio calculation is needed to define effective web (shear) area for a conservative design approach. This effective shear area is basically a reduction of the total shear area based on the number of webs influenced by the wheel load.

The GR250 deck has a total of four webs and three unsupported lengths. The wheel load covers a maximum of two webs and one unsupported length as seen in the image to the right. To determine the maximum reactions for each beam calculation, an arbitrary wheel load (distributed load) was distributed across the entire width. This ratio then is multiplied by the total web area, hence a reduced shear area.

	Max Span (in) for H-5 Wheel Load Applied at Midspan							
Code	Allowable Strength	Allowable Deflection 0.25in	Allowable Deflection L/360	Allowable Deflection L/500				
IBC ^A	315							
LRFD AASHTO ^B	225	90	91	75				
ASD AASHTO ^c	199							

A - 2018 International Building Code (IBC); IBC Safety Factors include 3 for shear and 2.5 for flexure

B – 2020 LRFD Bridge Design Specifications, 9th Edition; LRFD AASHTO Equivalent Allowable Safety Factors include 3.5 for shear and 3.5 for flexure (Equivalent Allowable Safety Factor = Load Factor Divided by Phi Factor)

C - 2002 AASHTO Standard Specifications for Highway Bridges 17th Edition; ASD AASHTO Safety Factors include 4 for shear and 4 for flexure

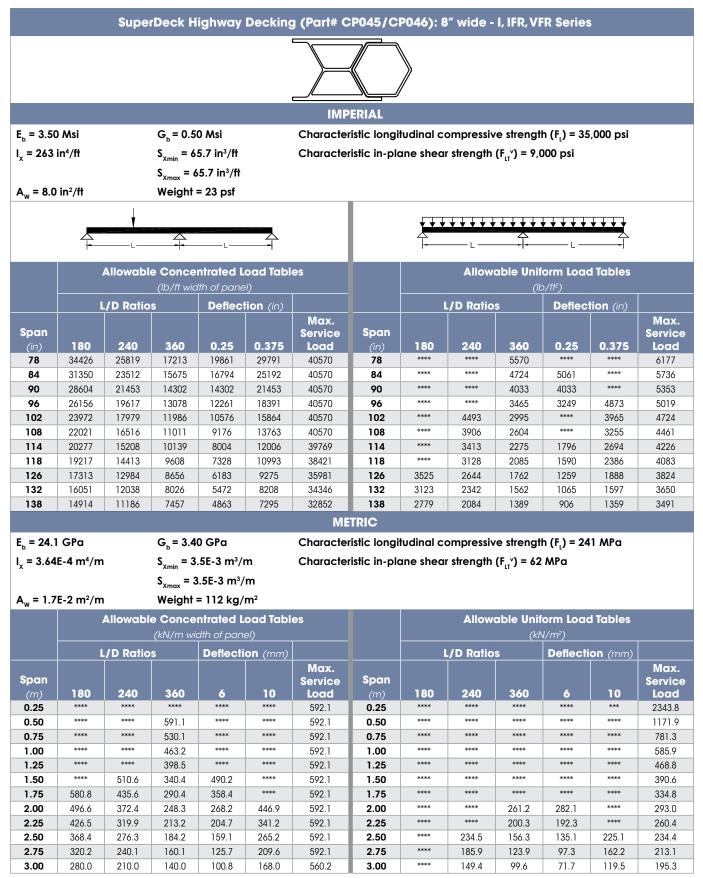
SuperDeck Highway Decking

SuperDeck Highway Decking was designed to replace deteriorating wood, concrete and steel bridges. The SuperDeck Highway performs to HS25-44 load standards and is intended for highway traffic. The corrosion resistant deck is 1/5th the weight of traditional concrete deck. It is factory manufactured and shipped to the job site per the engineer's specification. The deck installs very fast and can be connected to steel or concrete girders with shear studs. Contact us for anti-skid and wearing surface options.

Applications

- Decking for Walkways & Platforms
- Marina Dock Decking
- Cooling Tower Decking
- Pedestrian Bridge Decks
- Vehicular Bridges
- Commercial Piers

Features and Benefits


- Corrosion Resistant
- Non-Conductive
- Lightweight
- Maintenance Free
- Environmentally Safe
- High Strength
- Structurally Stable
- Electromagnetic Transparency
- Easy Standard Installation Methods
- Panels Easily Removed
- Elimination of Expensive Labor & Equipment

SuperDeck Highway Decking (Part# CP045/CP046) - Simple Supported Beam - Single Span

		Supe	rDeck H	ighway	Decking	g (Part# C	P045/C	P046): 8	" wide -	I, IFR, V	FR Series	5	
						IMP	ERIAL						
E _b = 3.50			G _b =0.5	0 Msi		Character	ristic longi	tudinal co	ompressiv	ve strengt	th (F _L) = 35	5,000 psi	
I _x = 263	in⁴/ft		$S_{xmin} = 6$	5.7 in³/ft		Character	ristic in-plo	ane shea	r strength	(F _{LT} [*]) = 9,	000 psi		
			$S_{xmax} = 6$	5.7 in³/ft									
A _w = 8.0) in²/ft		Weight	= 23 psf									
			Ļ										
				_					4		Ż		
		7	L						-	L	-		
		Allowabl		ntrated L Ith of pane		es			Allow		form Loa (b/ff²)	d Tables	
		./D Ratio			tion (in)				L/D Ratio			tion (in)	
Span						Max. Service	Span						Max. Service
(in) 78	180 27783	240 20837	360 13891	0.25 16029	0.375 24043	Load 48180	(in) 78	180 7293	240 5470	360 3647	0.25 4208	0.375 6311	Load 7412
84	25029	18772	12515	13409	24043	40100	84	6061	4546	3031	3247	4870	6883
90	22621	16966	11311	11311	16966	41938	90	5084	3813	2542	2542	3813	6424
96	20512	15384	10256	9615	14422	39317	96	4300	3225	2150	2016	3023	6023
102	18659	13994	9330	8232	12348	37004	102	3666	2749	1833	1617	2426	5668
108 114	17028 15588	12771 11691	8514 7794	7095 6153	10643 9230	34948 33109	108 114	3147 2720	2361 2040	1574 1360	1311	1967 1611	5353 5072
114	14720	11091	7360	5614	8421	31986	114	2720	1858	1238	945	1417	4900
126	13178	9883	6589	4706	7060	29956	126	2069	1552	1035	739	1108	4589
132	12167	9125	6083	4148	6222	28594	132	1819	1364	910	620	930	4380
						ME	TRIC						
E _b = 24.1	1 GPa		G _b =3.4	0 GPa		Character	ristic longi	tudinal co	ompressiv	ve strengt	th (F _L) = 24	1 MPa	
I _x = 3.64	lE-4 m⁴/m	I	S _{xmin} = 3	.5E-3 m³/	m	Character	ristic in-plo	ane shea	r strength	(F _{LT} [*]) = 62	2 MPa		
			$S_{xmax} = 3$	8.5E-3 m ³ /	′m								
A _w = 1.7	/E-2 m²/m	ı	Weight	= 112 kg/	m²								
		Allowabl	e Conce	ntrated L	oad Tabl	es			Allow	able Uni	form Loa	d Tables	
			(kN/m wi	dth of pan	el)					(ki	N/m²)		
		/D Ratio	S	Deflecti	on (mm)				L/D Ratio	s	Deflect	i on (mm)	
Span						Max.	Span						Max.
Span (m)	180	240	360	6	10	Service Load	Span (m)	180	240	360	6	10	Service Load
0.25	****	****	628.9	****	****	703.1	0.25	****	****	****	****	****	2812.5
0.50	****	****	570.7	****	****	703.1	0.50	****	****	****	****	****	1406.3
0.75	****	****	494.4	****	****	703.1	0.75	****	****	****	****	****	937.5
1.00 1.25	692.5	624.6 519.4	416.4 346.2	****	****	703.1	1.00 1.25	****	****	495.9	****	****	703.1 562.5
1.50	574.2	430.7	287.1	413.4	689.0	703.1	1.50	****	****	335.9	****	****	468.8
1.75	477.8	358.3	238.9	294.8	491.4	703.1	1.75	****	353.6	235.7	290.9	****	401.8
2.00		200.0	200.1	216.1	360.2	699.5	2.00	341.1	255.8	170.6	184.2	307.0	351.6
	400.2	300.2											
2.25	338.0	253.5	169.0	162.2	270.4	621.8	2.25	253.5	190.1	126.8	121.7	202.8	312.5
					270.4 207.4 162.0	621.8 559.6 508.8			190.1 144.6 112.3	126.8 96.4 74.8	121.7 83.3 58.8	202.8 138.8 98.0	312.5 281.3 255.7

Maximum allowable load is determined by a 2.5 safety factor in both flexure and 3.0 safety factor in shear.

SuperDeck Highway Decking (Part# CP045/CP046) - Simple Supported Beam - Continuous Span

Maximum allowable load is determined by a 2.5 safety factor in both flexure and 3.0 safety factor in shear.

Choose Creative Composites Group for Comprehensive Project Support

Your Single Source for Innovatively Engineered Decking Solutions Using FRP Composites

Advance your products and projects beyond the limitations of traditional decking materials by leveraging innovative decking products from Creative Composites Group. We are a leader in technical innovation that is backed by the industry's most comprehensive FRP manufacturing group for infrastructure.

CCG can help you specify SuperDeck systems to meet your current engineering requirements and fabrication needs for bridges, rail platforms and pedestrian access structures that meet the needs of future generations.

We offer comprehensive engineering, design and consultation for decking components. Our manufacturing capabilities include the broadest range of design and build solutions to meet your unique criteria. That's possible only with our proven engineering processes, end-to-end collaboration, service and support resources. Composite FRP decking lasts longer than conventional materials and often have a lower lifetime cost when you consider longer service-life and low to no maintenance costs.

Discover Your Custom Engineered FRP Decking Provider

Creative Composites Group is committed to becoming a trusted business partner who is keenly interested in your project's success. Creative Composites Group works alongside your team, from facility owners to design engineers and contractors, to help you develop a customized FRP solution that meets the most demanding structural requirements and environmental conditions.

Contact us for your next engineered composite decking project. We'd be thrilled to discuss it with you.

Creative Composites Group 888-274-7855

214 Industrial Lane Alum Bank, PA 15521

CreativeCompositesGroup.com

DLR01302023R1 ©2023 Creative Composites Group Inc. All Rights Reserved Worldwide