

Statement of Verification

BREG EN EPD No.: 000479

Issue 02

BRE/Global

This is to verify that the

Environmental Product Declaration provided by:

Creative Composites Group

is in accordance with the requirements of:

EN 15804:2012+A1:2013

and

BRE Global Scheme Document SD207

This declaration is for:

1 metric ton of TU450 – vinyl ester 12" x $\frac{1}{2}$ " (305 mm x 12.7 mm) diameter round fibreglass reinforced polymer (FRP) pultruded utility pole.

Company Address

Creative Composites Group Creative Pultrusions, Inc. 214 Industrial Lane Alum Bank, PA 15521

FBaker

Signed for BRE Global Ltd

Emma Baker

Operator

19 October 2023

Date of this Issue

27 February 2028

Expiry Date

Date of First Issue

28 February 2023

This Statement of Verification is issued subject to terms and conditions (for details visit www.greenbooklive.com/terms.

To check the validity of this statement of verification please, visit www.greenbooklive.com/check or contact us.

BRE Global Ltd., Garston, Watford WD25 9XX.

T: +44 (0)333 321 8811 F: +44 (0)1923 664603 E: Enquiries@breglobal.com

Environmental Product Declaration

EPD Number: 000479

General Information

EPD Programme Operator	Applicable Product Category Rules		
BRE Global Watford, Herts WD25 9XX United Kingdom	BRE Environmental Profiles 2013 Product Category Rules for Type III environmental product declaration of construction products to EN 15804:2012+A1:2013		
Commissioner of LCA study	LCA consultant/Tool		
Creative Composites Group Creative Pultrusions, Inc. 214 Industrial Lane Alum Bank, PA 15521	LCA Tool: BRE LINA 2.0 LCA Consultant: Kelsy Valko, Creative Composites Group		
Declared Unit	Applicability/Coverage		
1 metric ton of TU450 – vinyl ester 12" x ½" (305 mm x 12.7 mm) diameter round fibreglass reinforced polymer (FRP) pultruded utility pole.	Product Specific.		
EPD Type	Background database		
Cradle to Gate	ecoinvent 3.2		
Demonstra	ition of Verification		
CEN standard EN 15	5804 serves as the core PCR ^a		
Independent verification of the declara	ation and data according to EN ISO 14025:2010 ⊠ External		
	riate ^b)Third party verifier: ger Connick		
a: Product category rules b: Optional for business-to-business communication; mandatory	for business-to-consumer communication (see EN ISO 14025:2010, 9.4)		

Comparability

Environmental product declarations from different programmes may not be comparable if not compliant with EN 15804:2012+A1:2013. Comparability is further dependent on the specific product category rules, system boundaries and allocations, and background data sources. See Clause 5.3 of EN 15804:2012+A1:2013 for further guidance

Information modules covered

	Droduo		Const	ruotio n				Use sta	ge				Fod	of life		Benefits and loads beyond
	Product		Construction		Related to the building fabric			Related to the building			End-o		End-of-life			the system boundary
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Raw materials supply	Transport	Manufacturing	Transport to site	Construction – Installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction demolition	Transport	Waste processing	Disposal	Reuse, Recovery and/or Recycling potential
$\overline{\mathbf{V}}$	$\overline{\mathbf{A}}$	$\overline{\mathbf{V}}$														

Note: Ticks indicate the Information Modules declared.

Manufacturing site(s)

Creative Pultrusions Inc. 214 Industrial Lane Alum Bank, PA 15521 United States

Construction Product

Product Description

The product is a TU450 - vinyl ester 12" x 1/2" (305 mm x 12.7 mm) diameter round fiberglass reinforced polymer (FRP) pultruded utility pole. Similar poles are made in different diameters with both round and octagonal cross-sections. The round poles are made for longer and higher-class strength applications whereas the octagonal poles are made for shorter lower-class applications. This specific 12"x 1/2" diameter round pole was chosen due to its high-volume demand. The poles are used to support conductors for the distribution and transmission of electricity. In some instances, the poles are used to support telecommunication lines and 5G networks.

Technical Information

The below values have been taken from the StormStrong Composite Utility Poles technical data sheet for Round Pultruded Pole TU450 - vinyl ester $12" \times 1/2"$ (305 mm x 12.7 mm).

Property	Value, Unit
Round Pole Mechanical Properties	
Flexural Strength per ASTM D1036 psi (Mpa) ³	58,825 (406)
Compression Strength per ASTM D1036 psi (Mpa) ³	58,825 (406)
Axial Compression Strength psi (Mpa) ³	58,825 (406)
Ultimate Axial Compression Capacity (Short Column) lbf (kg) ³	1,064,732 (482,954)
Modulus of Elasticity per ASTM D1036 psi (Gpa)	5.84E6 (40.3)
Bending Stiffness (EI) per ASTM D1036 lbs-in² (kg-mm²)	1.75E9 (512E9)

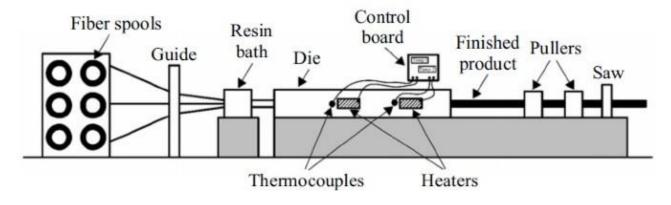
Property	Value, Unit			
Ultimate Moment Capacity per ASTM D1036 lb-ft (kN•m) ³	244,124 (331)			
Max. Bolt Torque lb-ft (N-m) 1	50 (67.8)			
Ultimate Pole Torque Strength lb-ft (N-m)	82,662 (112,075)			
Ultimate Pin Bearing Strength Lengthwise psi (Mpa) 2,3	24,585 (169.5)			
Ultimate Pin Bearing Strength Crosswise psi (Mpa) ^{2,3}	14,063 (97.0)			
Ultimate Washer Pull Through Strength kips (kg) 3,6	18.9 (8,593)			
Ultimate Shear Capacity, Calculated (lbs) (kN) ³	86,428 (384)			
In-Plane Shear Strength per ASTM D5379 psi (Mpa) ³	9,550 (65.8)			
Physical Properties				
Moment of Inertia in4 (mm4)	299 (1.24E8)			
Section Modulus in ³ (mm ³)	49.8 (8.16E5) 4.07 (103.4)			
Radius of Gyration in (mm)				
Weight lb/ft (N/m)	16.9 (246.6)			
Wall Thickness in (mm)	0.5 (12.7)			
Coefficient of Thermal Expansion (CTE) Lengthwise in/in/°F	5.00E-06			
Water Absorption ASTM D570 (max)	0.60% (24hrs)			
Fiber Volume Fraction %	≥50%			
Cross Sectional Area in ² (mm ²)	18.1 (11,700)			
Surface Area ft²/ft (m²/m)	3.1 (0.96)			
Fire Properties				
Flame Rating (UL 94)	V0 Self Extinguishing			
Flame Spread ASTM E-84	Class A 25 or less			
Electrical Properties				
ASTM F711 (100 kVAC per foot - 5 minutes dry) *	Passed			
IEEE978 (75 kVAC per foot - 1 minute wet)	Passed			

Main Product Contents

Material/Chemical Input	%
Rovings	40-50
Mats	30-40
Veils	0-2
Resin	15-25

Manufacturing Process

The product is manufactured through a process called pultrusion. The pultrusion manufacturing process consists of the following four steps:


FEEDING FIBER REINFORCEMENT INTO THE GUIDE: The pultrusion process involves pulling fiberglass reinforcement through a heated die. These materials include continuous strand mats or rolls of filament (otherwise known as rovings). The first step is feeding the fiberglass materials into the pre-forming guide.

RESIN IMPREGNATION: Once brought together in the guide, the fiberglass fibers undergo resin impregnation. Traditionally this is done by moving the fibers through a wet-out bath of polymer. The mixed polymer consists of a resin, pigments, fillers, and curing catalyst. In some cases, the mixed resin is injected into the heated die saturating the fiberglass reinforcement.

HEATED DIE: After passing through the wet-out bath, the reinforced fibers pass through a heated die. This is the step where the fibers begin to solidify into their final shape, as the heat initiates the cross-linking process within the impregnated reinforcements.

SEPARATION FROM THE DIE: Near the end of the heating process, the temperature of the resin will become higher than the temperature of the die. This begins the separation process. Manufacturers use a pulling mechanism to remove the cured profile from the die. Once separated, the profiles can be cut to the appropriate lengths and undergo secondary processing if necessary.

Process flow diagram

Life Cycle Assessment Calculation Rules

Declared unit description

1 metric ton of TU450 – vinyl ester 12" x $\frac{1}{2}$ " (305 mm x 12.7 mm) diameter round fibreglass reinforced polymer (FRP) pultruded utility pole manufactured at Creative Pultrusions.

System boundary

This cradle to gate EPD includes the processes covered in the manufacturing site and product stage A1 to A3.

Data sources, quality and allocation

The quantity used in the data collection for this EPD has been taken from production data of the vinyl ester 12° x $1/2^{\circ}$ (305 mm x 12.7 mm) diameter round composite utility pole. The data collection period was 06/01/2021 through 05/31/2022. Total site data has been allocated to this product based on the total production of TU450-vinyl ester 12° x $1/2^{\circ}$ diameter round composite utility poles as a percentage of the overall total production at Creative Pultrusions Inc., Alum Bank site, which resulted in a value of 4.53%. The 4.53% represents the percentage of total site energy, fuels, and ancillary materials used for this product. The total site water and residual wastes has been allocated to this product based on the percentage of employees designated to production of TU450, which resulted in a value of 6.4%.

Datasets are derived from ecoinvent v3.2 (2015) and the LCA tool used was BRE LINA v2.0. The LCA models and reports the production stage modules, A1 to A3. A1 to A3 represents raw material supply, transport, and manufacturing. No inputs or outputs have been excluded, all the ancillary materials, energy, and water use are included. The only exemptions are emissions to water and soil. Emissions to air were calculated per 40 CFR Part 63 subpart WWWW.

Waste has been calculated based on the total amount of vinyl ester 12" x 1/2" diameter round composite utility pole scrap plus 6.4% the residual waste. A general assumption has been made that wastewater to sewer is equal to mains water.

Secondary data has been obtained for all other upstream and downstream processes that are beyond the control of the manufacturer (i.e., raw material production) from the ecoinvent 3.2 database. All ecoinvent datasets are complete within the context used and conform to the system boundary and the criteria for the exclusion of inputs and outputs, according to the requirements specified in EN15804.

Specific European and UK datasets have been used selected from the ecoinvent LCI and electricity US dataset were used for this LCA. The quality level of geographical and technical representativeness is therefore very good. The quality level of time representativeness is fair as the background LCI datasets are based on ecoinvent v3.2 which was compiled in 2015. Therefore, there is approximately 5-6 years between the ecoinvent LCI reference year and the time period for which the LCA was undertaken.

Cut-off criteria

All raw materials, ancillary materials, process energy, general energy, water use/discharge and production waste have been included. The only exemptions are emission to soil and water as these are not required to be monitored in our EPA reporting.

LCA Results

Parameters describing environmental impacts									
	GWP	ODP	AP	EP	POCP	ADPE	ADPF		
			kg CO2 equiv.	kg CFC 11 equiv.	kg SO2 equiv.	kg (PO4)3- equiv.	kg C2H4 equiv.	kg Sb equiv.	MJ, net calorific value.
	Raw material supply	A1	2.67E+03	1.84E-04	1.84E+01	4.39E+00	1.75E+00	2.73E-01	4.45E+04
Draduat atoma	Transport	A2	1.20E+02	2.24E-05	5.42E-01	1.41E-01	8.86E-02	3.02E-04	1.85E+03
Product stage	Manufacturing	A3	1.35E+02	1.34E-05	5.53E-01	7.22E-01	1.01E-01	9.27E-05	2.31E+03
	Total (of product stage)	A1-3	2.93E+03	2.19E-04	1.95E+01	5.26E+00	1.94E+00	2.73E-01	4.86E+04

GWP = Global Warming Potential; ODP = Ozone Depletion Potential; AP = Acidification Potential for Soil and Marketing Potential for

AP = Acidification Potential for Soil and Water;

EP = Eutrophication Potential;

POCP = Formation potential of tropospheric Ozone; ADPE = Abiotic Depletion Potential – Elements; ADPF = Abiotic Depletion Potential – Fossil Fuels;

Parameters describing resource use, primary energy											
			PERE	PERM	PERT	PENRE	PENRM	PENRT			
	MJ	MJ	MJ	MJ	MJ	MJ					
	Raw material supply	A1	2.60E+03	6.90E+00	2.61E+03	4.27E+04	6.19E+03	4.89E+04			
Droduct store	Transport	A2	2.65E+01	8.89E-05	2.66E+01	1.84E+03	0.00E+00	1.84E+03			
Product stage	Manufacturing	A3	3.56E+02	5.89E-05	3.56E+02	2.82E+03	0.00E+00	2.82E+03			
	Total (of product stage)	A1-3	2.99E+03	6.90E+00	2.99E+03	4.73E+04	6.19E+03	5.35E+04			

PERE = Use of renewable primary energy excluding renewable primary energy used as raw materials;

PERM = Use of renewable primary energy resources used as raw materials;

PERT = Total use of renewable primary energy resources;

PENRE = Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials; PENRM = Use of non-renewable primary energy resources used as raw materials;

PENRT = Total use of non-renewable primary energy resource

Parameters describing resource use, secondary materials and fuels, use of water										
			SM	RSF	NRSF	FW				
			kg	MJ net calorific value	MJ net calorific value	m³				
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	4.66E+01				
Product stage	Transport	A2	0.00E+00	0.00E+00	0.00E+00	4.19E-01				
Floudel stage	Manufacturing	А3	0.00E+00	0.00E+00	0.00E+00	6.85E-01				
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	4.77E+01				

SM = Use of secondary material; RSF = Use of renewable secondary fuels; NRSF = Use of non-renewable secondary fuels; FW = Net use of fresh water

Other environmental information describing waste categories										
			HWD	NHWD	RWD					
			kg	kg	kg					
	Raw material supply	A1	5.65E+01	1.74E+02	1.15E-01					
Droduct store	Transport	A2	7.81E-01	1.12E+02	1.27E-02					
Product stage	Manufacturing	А3	4.69E-01	3.65E+01	1.22E-02					
	Total (of product stage)	A1-3	5.78E+01	3.22E+02	1.40E-01					

HWD = Hazardous waste disposed; NHWD = Non-hazardous waste disposed; RWD = Radioactive waste disposed

Other environmental information describing output flows – at end of life											
			CRU	MFR	MER	EE					
			kg	kg	kg	MJ per energy carrier					
	Raw material supply	A1	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Draduot ataga	Transport	A2	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Product stage	Manufacturing	А3	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Total (of product stage)	A1-3	0.00E+00	0.00E+00	0.00E+00	0.00E+00					

CRU = Components for reuse; MFR = Materials for recycling MER = Materials for energy recovery; EE = Exported Energy

Interpretation of results

The bulk of the environmental impacts and primary energy demand are attributed to the upstream manufacturing process of the pultruded utility pole, covered by information modules A1-A3 of EN15804:2012+A1:2013.

Product calculations

The LCA results listed in the tables above are for 1 metric ton of Round Pole TU450 12"x1/2" (305mm x 12.7mm). The end-user of this EPD can therefore use these results to calculate impact of pole per meter or per pole by dividing the impacts "per m" as follows,

Product	Length (m)	Weight (kg)	Kg/m	GWP Impacts/m
TU450.3D7 – 1 Pole	15.24	382.3784	25.0904	7.35E+01

References

BSI. Sustainability of construction works – Environmental product declarations – Core rules for the product category of construction products. BS EN 15804:2012+A1:2013. London, BSI, 2013.

BSI. Environmental labels and declarations – Type III Environmental declarations – Principles and procedures. BS EN ISO 14025:2010 (exactly identical to ISO 14025:2006). London, BSI, 2010.

BSI. Environmental management – Life cycle assessment – Principles and framework. BS EN ISO 14040:2006. London, BSI, 2006.

BSI. Environmental management – Life cycle assessment – requirements and guidelines. BS EN ISO 14044:2006. London, BSI, 2006.

Pre-Consultants by. SimaPro 9 LCA Software 2021. http://www.pre-sustainability.com.

Ecoinvent Centre. Swiss Centre for Life Cycle Inventories. http://www.ecoinvent.org

https://f.hubspotusercontent10.net/hubfs/457166/Utility%20Pole%20Brochure%20(CPM231-0613)ltrsize.pdf

ASTM D1036 - Standard Test Methods of Static Tests of Wood Poles

ASTM D5379 - Shear Properties of Composite Materials by the V-Notched Beam Method

ASTM D570 – Standard Test Method for Water Absorption of Plastics

ASTM E-84 – Standard Test Method for Surface Burning Characteristics of Building Materials

ASTM F-711 – Standard Specification for Fiberglass-Reinforced Plastic (FRP) Rod and Tube Used in Live Line Tools

IEEE978 - Guide for In-Service Maintenance and Electrical Testing of Live-Line Tools